Discrete Two-Stage Stochastic Mixed-Integer Programs with Applications to Airline Fleet Assignment and Workforce Planning Problems

نویسندگان

  • Xiaomei Zhu
  • Antonio A. Trani
چکیده

(Extended Abstract) Stochastic programming is an optimization technique that incorporates random variables as parameters. Because it better reflects the uncertain real world than its traditional deterministic counterpart, stochastic programming has drawn increasingly more attention among decision-makers, and its applications span many fields including financial engineering , health care, communication systems, and supply chain management. On the flip side, stochastic programs are usually very difficult to solve, which is further compounded by the fact that in many of the aforementioned applications, we also have discrete decisions, thereby rendering these problems even more challenging. In this dissertation, we study the class of two-stage stochastic mixed-integer programs (SMIP), which, as its name suggests, lies at the confluence of two formidable classes of problems. We design a novel algorithm for this class of problems, and also explore specialized approaches for two related real-world applications. Although a number of algorithms have been developed to solve two-stage SMIPs, most of them deal with problems containing purely integer or continuous variables in either or both of the two stages, and frequently require the technology and/or recourse matrices to be deterministic. As a groundbreaking effort, in this work, we address the challenging class of two-stage SMIPs that involve 0-1 mixed-integer variables in both stages. The only earlier work on solving such problems (Carøe and Schultz (1999)) requires the optimization of several non-smooth Lagrangian dual problems using subgradient methods in the bounding process, which turns out to be computationally very expensive. We begin with proposing a decomposition-based branch-and-bound (DBAB) algorithm for solving two-stage stochastic programs having 0-1 mixed-integer variables in both stages. Since the second-stage problems contain binary variables, their value functions are in general nonconvex and discontinuous; hence, the classical Benders' decomposition approach (or the L-shaped method) for solving two-stage stochastic programs, which requires convex subproblem value functions, cannot be directly applied. This motivates us to relax the second-stage problems and accompany this relaxation with a convexification process. To make this process computationally efficient, we propose to construct a certain partial convex hull representation of the two-stage solution space, using the relaxed second-stage constraints and the restrictions confining the first-stage variables to lie within some hyper-rectangle. This partial convex hull is sequentially generated using a convexification scheme, such as the Reformulation-Linearization Technique (RLT), which yields valid inequalities that are functions of the first-stage variables and, of noteworthy importance, are reusable in the subsequent subproblems by updating the values …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Model for Fleet Assignment Problem, Case Study of Iran Air Network at Vision 2036

The fleet assignment problem (FAP) assigns the type of airplane at each flight segment. Since airplane is an expensive resource, poor fleet assignment can cause a great increase in costs of airlines. There are so many consideration which should be tackled in formulation of a FAP problem, especially the parameters regarding to the airplanes. This paper presents a novel, mixed integer programing ...

متن کامل

A local search heuristic for a mixed integer nonlinear integrated airline schedule planning problem

In this paper we present a local search heuristic method for an integrated airline scheduling, fleeting and pricing model. The integrated model simultaneously optimizes the decisions of schedule design, fleet assignment, seat allocation, pricing and considers passengers’ spill and recapture. The resulting problem is a mixed integer non-convex problem due to the explicit representation of a dema...

متن کامل

An Integrated Approach for Facility Location and Supply Vessel Planning with Time Windows

This paper presents a new model of two-echelon periodic supply vessel planning problem with time windows mix of facility location (PSVPTWMFL-2E) in an offshore oil and gas industry. The new mixed-integer nonlinear programming (MINLP) modelconsists ofa fleet composition problem and a location-routing problem (LRP). The aim of the model is to determine the size and type of large vessels in the fi...

متن کامل

A Mixed Integer Programming Formulation for the Heterogeneous Fixed Fleet Open Vehicle Routing Problem

The heterogeneous fixed fleet open vehicle routing problem (HFFOVRP) is one of the most significant extension problems of the open vehicle routing problem (OVRP). The HFFOVRP is the problem of designing collection routes to a number of predefined nodes by a fixed fleet number of vehicles with various capacities and related costs. In this problem, the vehicle doesn’t return to the depot after se...

متن کامل

Robust Airline Fleet Assignment: Imposing Station Purity Using Station Decomposition

Fleet assignment models are used by many airlines to assign aircraft to flights in a schedule to maximize profit [Abara 1986, Hane et al 1995]. A major airline reported that the use of the fleet assignment model increased annual profits by more than USD100 million [www.informs.org, 2002] a year over three years. The results of fleet assignment models affect subsequent planning, marketing and op...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006